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Abstract—This paper deals with small-signal analysis of dc–dc
converters with sliding mode control. A suitable small-signal
model is developed which allows selection of control coefficients,
analysis of parameter variation effects, characterization of the
closed-loop behavior in terms of audiosusceptibility, output and
input impedances, and reference to output transfer function. Un-
like previous analyses, the model includes effects of the filters used
to evaluate state variable errors. Simulated and experimental
results demonstrate model potentialities.

Index Terms—Control techniques, sliding mode control, small-
signal analysis

I. INTRODUCTION

A CONTROL technique suitable for dc–dc converters must
cope with their intrinsic nonlinearity and wide input

voltage and load variations, ensuring stability in any operating
condition while providing fast transient response. Among
the various control techniques proposed in literature, sliding
mode control [1], [2] offers several advantages, namely, large-
signal stability, robustness, good dynamic response, and simple
implementation [3], [4].

In spite of these positive aspects, sliding mode control is not
yet popular, probably because its theoretical complexity which
can make selection of controller parameters difficult. In fact,
these parameters must be chosen so as to satisfy existence,
hitting, and stability conditions. The analysis is easily carried
out only for second-order converters which permit a phase-
plane description of the system.

Another limitation is that sliding mode control requires, in
theory, sensing of all state variables and generation of suitable
references for each of them.

In practice, generation of reference signals for all state
variables is not needed in dc–dc converters. In fact, since
only error signals are required for the control, they can be
achieved by high-pass filtering the state variable signals in the
assumption that their dc component is automatically adjusted
by the converter according to the input–output power balance
condition. Of course, these high-pass filters, not considered in
previous analyses, increase the system order and can heavily
affect the converter dynamic.

Moreover, converter control can be done effectively by
sensing only one inductor current in addition to the output
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voltage [4], even for high-order converters (e.g., Cuk and
Sepic), resulting in a control complexity similar to that of
standard current-mode controllers. However, a comparison
between the two solutions (full-order control and reduced-
order control) is not easy to obtain.

In summary, there is a lack of models able to describe the
effects of circuit and controller parameter variations and to
allow a comparison between the sliding mode approach and
other popular control techniques like current-mode control,
pulse width modulation (PWM) control, etc., in terms of
converter transfer functions (audiosusceptibility, output and
input impedances, and reference to output transfer ratio).

This paper presents a small-signal model of sliding mode-
controlled dc–dc converters operating in a continuous con-
duction mode which also includes the effects of the filters
used to determine state variable references. Simulated results
of a Sepic converter are reported which show the model
potentialities. Experimental results of a Boost converter are
also given.

II. BASIC SLIDING MODE CONTROLLER

Fig. 1 shows the general sliding mode-control scheme of
dc–dc converters. Although not used in practice, this scheme
emphasizes the properties and operation mechanism of this
control. and are input and output voltages, respec-
tively, while and are
the internal state variables of the converterinductor currents
and capacitor voltages), and is the system order.

For the sake of generality, the state variables will be
indicated as components of state vectorAccording to the
general sliding mode-control theory, all state variables are
sensed, and the corresponding errors (defined by difference
to the reference values are multiplied by proper gains

and added together to form sliding
function Then, hysteretic block HC keeps this function
near zero by gating the power switchon and off. We can
therefore assume

(1)

This means that the control forces the system to evolve on the
hyperplane (sliding surface) defined by (1).

As discussed in [4], selection of coefficients must be
done in order to satisfy some basic requirements: 1) the state
trajectories starting from points near the hyperplane must be
directed toward the sliding surface (1) for both possible states
of the converter switch (existence condition); 2) the system
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Fig. 1. Basic scheme of a sliding mode controller for dc–dc converters.

trajectories must encounter the sliding surface irrespective of
their starting point in the phase space (hitting condition); and
3) the system motion on the sliding surface must reach a
stable point corresponding to the desired voltages and currents
(stability condition).

Although the feasibility of a sliding mode controller of
reduced order (where only one inductor current is sensed in
addition to the output voltage) has been already demonstrated
[4], in the following we will consider the case of Fig. 1 for
the sake of generality. Results for reduced-order controllers
are easily obtainable by setting some sliding coefficients,,
to zero.

III. SMALL -SIGNAL MODEL DERIVATION

A generic dc–dc converter, working in a continuous con-
duction mode, can be characterized by the following two sets
of equations:

switch on (2)

switch off (3)

where is the vector of state variables, andis the vector of
the input variables (input voltage and possibly load current

According to thestate space averaging method[5], the
average system behavior is described by the equation

(4a)

where

(4b)

where is the converter duty cycle in the steady state, and
and are the averaged state variables and input variables,

respectively. After linearization (small-signal assumption), we
can derive the following small-signal equation in which the hat

means perturbation from a steady-state working point

(5)

Matrices and are the same as (4b), and matrixis given
by

(6)

In general, only some of the reference valuesindicated
in (1) are fed from the external control (often, only as output
voltage reference is assigned). The other references are derived
internally to the controller, normally by low-pass filtering the
corresponding state variables. For these latter references we
can define additional state variables whose dynamic
is described by

(7)

where are the corresponding filter time constants. Thus, the
system order increases by The remaining state
variable references are additional inputs. Note that linear (7)
holds also for perturbed variables.

We call the vector of all state variables, including the
additional state variables of the filters

(8)

Now we can exploit condition (1) which holds whenever
the converter operates in the sliding mode. Since the hysteretic
block HC forces the instantaneous state variables close to their
references (the closeness depends on the hysteresis amplitude
and thus on the switching frequency), constraint (1) can be
used also for averaged variables. Thus, taking the derivative
of (1), i.e., , and using (5) and (7), we can express the
converter duty cycle as a function of complete state vector,
derivative of external references , and input variables

(9)

where matrices are given in Appendix I.
Substituting (9) in (5) and using (7) we obtain the linear system
equation

(10)

Taking now into account constraint (1), which holds even
for perturbed variables, the system order is reduced by one.
The final small-signal model has order and is
given by

(11)

Expressions for matrices , , , , , , and
are given in Appendix I.

From (11) we are now able to compute all closed-loop
transfer functions. In particular, the input–output voltage trans-
fer function (audiosusceptibility), external reference to output
voltage, and input admittance are directly derived from (11).
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Fig. 2. Sepic converter with sliding mode control.

Instead, derivation of converter output impedance requires
definition of the load current as an external input in (5).

As shown above, the model derivation involves only knowl-
edge of the small-signal model derived from thestate space
averaging methodand condition (1) which holds whenever the
system moves on the sliding surface. Thus, a similar procedure
can be applied for the derivation of the model for converters
operating in discontinuous conduction mode (DCM) by simply
using the corresponding small-signal model for the power
stage [5] and thus changing (4b). However, the validity of the
model is guaranteed only if a proper sliding surface is chosen
so as to ensure a stable sliding mode motion for converters
operating in DCM.

It is noticeable that the above model derivation involves the
same approximations of state space-averaged modeling [5].
Thus, its validity is limited to those frequencies for which
switching frequency effects can be neglected. In this view, the
hysteresis block HC is modeled as constraint (1) on the average
values without considering the effects due to the switching
frequency.

IV. M ODEL VERIFICATION

In order to test the validity of the model, a Sepic converter
(whose parameters are given in Appendix IV) with a sliding
mode control was analyzed. According to [6], only two state
variables are sensed: one is the output voltage, and the other
is the input inductor current as shown in Fig. 2.

Output impedance, audiosusceptibility, input admittance,
and reference to output transfer function were computed
from the above small-signal model. The corresponding results
are shown in Fig. 3. For the output impedance [Fig. 3(a)]
and audiosusceptibility [Fig. 3(b)], the results of the model
simulation (continuous line) are reported together with the
results of the converter simulation (dotted line) for the purpose
of comparison. As we can see, the maximum error is about
1 dB in the whole range of operating frequencies. Fig. 3(c)
shows the converter input admittance, and Fig. 3(d) shows the
reference to output transfer function obtained from our model.

As already explained, the proposed small-signal model can
be used both for full and reduced-order control, thus showing
how much the latter influences the system performances.

(a)

(b)

(c)

(d)

Fig. 3. (a) Output impedance, (b) audiosusceptibility (continuous
line—model simulation and dotted line—circuit simulation), (c) input
admittance, and (d) reference to output transfer function.
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Fig. 4. Boost converter with sliding mode control.

Although a full-order control generally results in better
performances, this is not true in general. For example, the
audiosusceptibility of the converter in Fig. 2 is considerably
better in terms of peak value and low-frequency behavior.

V. EFFECTS OFCONTROL PARAMETER VARIATIONS

An important advantage of the derived small-signal model is
the possibility to analyze the dynamic of the controlled system
as a function of all control parameters, i.e., filter time constants
and sliding coefficients This makes the design process
straightforward unlike previous analyses which disregard filter
time constants and do not give information on the dependence
of the system dynamic on sliding coefficients.

Let us consider, for example, the Boost converter with
sliding mode control shown in Fig. 4. The order of the overall
system is two because we have two state variables
and one low-pass filter Following the procedure
given in Appendix I, we compute matrix which is given
by

(12)

where , , , is the filter time
constant, and Note that coefficients and
were chosen in order to make the value ofadimensional so
that becomes a conductance. The characteristic polynomial
of matrix is given by the determinant of matrix

(13)

From the analysis of the coefficients of polynomial (see
Appendix II), we recognize that if we choose

(14)

TABLE I
VALUES OF �

crit
AND g

crit
FOR BASIC CONVERTER TOPOLOGIES

Fig. 5. Root locus of closed-loop system for variation of low-pass filter time
constant of the Sepic converter in Fig. 2.

the system stability is ensured provided that

(15)

It can be demonstrated that condition (14), derived under
small-signal time-averaging approximation, is the same as the
existence condition of the sliding mode for a Boost converter
in the steady state. This is easily derived from a converter
trajectory analysis (see Appendix III). The same result can be
found for other basic converter topologies for which values of

and are reported in Table I.
For higher order systems, for which it is not easy to derive

simple conditions as (14) and (15), (11) can be used directly
to observe the effects of the controller parameters on the
system dynamic. For example, Fig. 5 shows the root locus
resulting from different values of the filter time constant (0.06
ms ms) of the Sepic converter in Fig. 2. Too low
values cause real poles and to become complex or even
to cross the imaginary axis.

VI. EXPERIMENTAL RESULTS

A Boost converter prototype, according to the scheme of
Fig. 4, was used to test the validity of the above theoretical
results. Converter parameters are listed in Table II.

Converter audiosusceptibility and output impedance were
measured and compared with those predicted by the model. For
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TABLE II
EXPERIMENTAL PROTOTYPE PARAMETERS

Fig. 6. Comparison between model forecast and experimental results: output
impedance a) open loop and b) closed loop.

Fig. 7. Comparison between model forecast and experimental results: audio-
susceptibility a) open loop and b) closed loop.

this purpose, the parameters used in the model were measured
directly on the prototype, and the inductor series resistance
was taken into account.

In Fig. 6, the open- and closed-loop output impedance is
reported. As we can see, theoretical and experimental results
agree pretty well. The sliding mode control reduces the peak in
the output impedance diagram by almost 20 dB. Fig. 7 shows
the audiosusceptibility behavior in the same conditions. Once
again, simulated and experimental curves look very similar,
while the improvement in the audiosusceptibility peak is about
30 dB.

Note that control causes a worsening of the dynamic char-
acteristics at high frequencies as compared to the open-loop
case. This behavior agrees with the multiloop nature of sliding
mode control as explained in [7].

VII. CONCLUSION

A small-signal model of dc–dc converters with sliding mode
control is derived. It allows evaluation of closed-loop perfor-
mances like audiosusceptibility, output and input impedances
and reference to output transfer function.

With this model, stability as well as effects of controller
parameter variations can be deeply investigated, and control
parameters can be carefully selected. Simulated results of a
Sepic converter and experimental results of a Boost converter
are reported, showing the validity of the approach.

APPENDIX I

In order to derive the expressions of matrices in (9)–(11),
it is convenient to split the vector of state variable references
between internal and external variables as follows:

(A1.1)

From (1), it follows that the derivative of sliding function
is also zero. Thus, considering perturbed signals, we can write

(A1.2)

in which the vector of sliding coefficients is divided in two
terms and

The dynamic description of the internal references is given
by (7) which can be rewritten as

(A1.3)

where is a diagonal matrix, while is a
matrix given by

(A1.4)

which holds in the hypothesis that the state variables in vector
are ordered as in vector
Substituting (A1.3) and (5) into (A1.2) and calculating the

duty cycle, we obtain (9) whose matrices are given by

(A1.5a)

(A1.5b)

(A.15c)

where

(A1.6)

Note that term is scalar.
The complete description of the system is given by (10)

which is obtained by substituting (9) in (5) and using (A1.3)
and (8). Matrices , , and result

(A1.7a)

(A1.7b)

(A1.7c)
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TABLE III

Lastly, in order to derive the matrices of the reduced order
system (11), let us consider nonzero the first elementof
vector Thus, from (1) and (A1.1) we can write

(A1.8)

Solving for the first state variable and substituting in (10),
we obtain (11) in which we have

(A1.9)

where

(A1.10)

and the notation means the submatrix obtained
from matrix taking rows from index – and columns from
index – , while the symbol : alone means all.

For example, for a Boost converter the previous matrices
are given by the following expressions:

where

and is given by (12).

APPENDIX II

In order to derive conditions (14) and (15), which ensure
system stability for a Boost converter with sliding mode
control, we analyze the sign of coefficients of the characteristic
polynomial (13). Calling and the roots of , we can
write

(A2.1)

The system is stable if both and have a negative real
part, i.e., if

(A2.2)

and

(A2.3)

From (13), (A2.2), and (A2.3) the following inequalities result:

(A2.4)

(A2.5)

From (A2.4) it results

(A2.6)

which is condition (14). From (A2.5), taking into account
(A2.6), it results

(A2.7)

where, substituting the maximum value for given by
(A2.6), the minimum value as given by (15) results.

APPENDIX III

As already mentioned, the existence condition requires that
the phase trajectories are directed toward the sliding surface
in a small volume around the surface itself. This statement
translates into conditions [1], [2]

(A3.1)

Now, in order to satisfy existence conditions [1], [4], we
choose the control strategy that closes the switch when the
sliding function is negative and opens the switch when
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is positive. Thus, writing the expression of for
the Boost converter in the two situations corresponding to the
different values of the switch status (open for the first one and
closed for the second one), the above inequalities (A.3.1) give

(A3.2a)

(A3.2b)

where is the instantaneous voltage of the output filter
capacitor, and is the input current. Now, if we consider
a small volume around the operating point in the phase
plane (small-signal approximation), we can use the nominal
capacitor voltage in (A3.2a) and (A3.2b) which is equal to the
output voltage. With this approximation, simple calculations
show that (A.3.2b) is equivalent to (A.3.2a), thus obtaining
condition (14).

APPENDIX IV

The parameter values of the Sepic converter of Fig. 2 are
given in Table III on the previous page.
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